

Dynamic Perceptual-Cognitive Functions in Aging and Cognitive Training Tools

Jocelyn Faubert, PhD Professor Université de Montreal

Copyright © 2023 Honeycmb Worldwide In

- Interact with the presenters Type your message in the chat box located in the control panel on the right side of your screen
- Experiencing technical difficulties viewing/hearing this webinar? Please send a chat message to the moderator
- The slides will advance automatically throughout the event

Jocelyn Faubert, PhD Professor Université de Montreal

- Obtained his PhD in 1991 in experimental psychology at Concordia University and had an FCAR award to pursue his postdoctoral studies at Harvard University
- His work has received extensive media coverage and he has mentored 20 Post-Doctoral Research Fellows in the past and supervised over 20 doctoral students and 70 masters and fellowship students
- Has received funding from the three main national research councils in Canada (NSERC, CIHR, SSHRC) and the Canadian Foundation for Innovation

Dynamic Perceptual-Cognitive Functions in Aging and Cognitive Training Tools

Jocelyn Faubert Professor, Faubert Lab, École d'optométrie, Université de Montréal

Co-Founder CogniSens 2008 Transfer of 4 technologies from lab including NeuroTracker

Dynamic visual scene Hanoi

youtube

3D-MOT principles (NeuroTracker)

Faubert & Sidebottom (2012)

3D-MOT principles

Amateurs vs Professionals vs university

Faubert, Scientific Reports 2013

Does it relate to performance ? NeuroTracker NBA study (Orlando Magic)

Hoffman group (University of Central Florida)

Study Findings

NeuroTracker linked to field performance

99.7% confidence level

Visual field motor reaction time meassures not correlated with performance related to decision making

Results

TABLE 1. Qualitative inferences on the magnitude of the relationship between game-related measures of performance, perceptual-cognitive function, and visual-motor reaction time (n = 12).*

		r	Positive	Trivial	Negative	Qualitative inference†
NeuroTracker	Visual tracking speed AST TO STL AST/TO	0.78 0.49 0.77 0.78	99.7 90.1 99.7 99.8	0.2 6.9 0.3 0.2	0.0 2.9 0.0 0.0	Most likely positive Likely positive Most likely positive Most likely positive
	Visual reaction time AST TO STL AST/TO Motor reaction time	-0.22 -0.18 0.02 -0.16	16.5 19.8 40.9 21.3	19.0 20.5 23.6 21.0	64.5 59.7 35.5 57.7	Unclear Unclear Unclear Unclear
performance	TO STL AST/TO Physical reaction time	0.29 0.19 -0.07	72.2 61.4 30.5	16.1 20.0 23.2	11.7 18.6 46.4	Unclear Unclear Unclear
vel	AST TO STL AST/TO	-0.13 0.01 0.10 -0.14	24.6 39.0 50.0 23.7	22.0 23.7 22.6 21.8	53.3 37.3 27.4 54 5	Unclear Unclear Unclear Unclear
n time d with on making	Variable region choice reaction AST TO STL AST/TO	0.07 0.15 0.27 -0.05	46.1 55.7 69.9 32.8	23.2 21.5 17.1 23.4	30.7 22.8 13.1 43.8	Unclear Unclear Unclear Unclear

*AST = assists; TO = turnovers; STL = steals; AST/TO = assists-to-turnovers ratio. †Threshold set to 0.1 for all relationships. Some studies showing predictive power of NeuroTracker scores for real-life decision making skills

	Behavior
Jarvis et al 2021	Air traffic controller task performance
Michaels, et al 2017	Driving performance
Harenberg, et al 2016	laparoscopic surgical skill performance
Faubert, 2013	League level in team sports
Woods-Fry, et al. 2017	Driving performance
Mangine, et al. 2014	Basketball decision making performance
Phillips 2022	Soccer performance metrics in games
Hoke, et al. 2017	Jet pilot parameters during flight
Benoit, et al. 2021	League level in in e-sports gaming

Use case example in the wild (US airforce academy training)

NeuroTracker training What does it do to the brain

• Improvement of cognitive functions

Original Article

Enhancing Cognitive Function Using Perceptual-Cognitive Training

Brendan Parsons¹, Tara Magill², Alexandra Boucher³, Monica Zhang², Katrine Zogbo⁴, Sarah Bérubé³, Olivier Scheffer², Mario Beauregard⁵, and Jocelyn Faubert¹

Clinical EEG and Neuroscience I-11 © EEG and Clinical Neuroscience Society (ECNS) 2014 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/15S0059414563746 eeg.sagepub.com **SAGE**

- ✓ Transfer on intelligence metrics
- ✓ Gains on: Attention, working memory, executive functions
- ✓ Improves cerebral activity

qEEG

Cognitive Function	Measure
Attention	
Selective	IVA+Plus (Consistency and Focus ^a), WAIS (Symbol Search), d2
Sustained	IVA+Plus (Stamina ^a , Consistency, Focus, and Sustained Quotient), d2
Divided	d2 Test of Attention, D-KEFS (Inhibition/Switching)
Inhibition	D-KEFS (Inhibition and Inhibition/Switching ^b)
Short-term memory	N/A
Working memory	WAIS (Spatial Span ^a and Letter-Number Sequencing)
Information processing speed	IVA+Plus (Speed ³) WAIS (Symbol Search, Code, Block Design), d2, D-KEFS (Color Naming and Word Reading)

🕈 Beta & Gamma

Frequency Power vs baseline (entire trial)

Biosemi EEG (64 channel)

Roy & Faubert, In Preparation

Aging work

Introduction Biological Motion Perception

Action Dittrich (1993) Gender IIII Troje (2002), Pollick & al. (2005) Identity Loula & al. (2005)

Using peripheral vision

Effect of virtual distances on biological motion perception

Healthy older observers cannot use biological-motion point-light information efficiently within 4 m of themselves

Legault, Troje & Faubert, 2012

i-Perception (2012) volume 3, pages 104 – 111

Aging work

Driving simulator scenarios and measures to faithfully **PLOS I** Oriving simulator scenarios and measures to faithfully evaluate risky driving behavior: A comparative study of different driver age groups

Jesse Michaels , Romain Chaumillon, David Nguyen-Tri, Donald Watanabe, Pierro Hirsch, Francois Bellavance, Guillaume Giraudet, Delphine Bernardin, Jocelyn Faubert

Virage Simulation[™]

- 180° vision •
- Blind spots ullet
- Cockpit movements and vibrations

Correlations Aggregated data for all driving scenarios

	3D-MOT	1 st Motion	2 nd Motion	1 st Orientation	2 nd Orientation
Crashes					
Near Crashes					
Mean spd					
Cont. TTP					
Max Cone Spd					
Max Brake					
Dist At Max Brake					
Max Steer Change Rate					
Dist At Max Steer Change Rate					
Steer Range					
Closest Dist					
Spd At Closest 1					
Hazard Rating 1					
Gas Rel TTP					1
Gas Rel Spd					
Gas Rel Dist					
Brake TTP					
Brake Spd					
Brake Dist					
Anticip TTP					
Speed at Anticip					1
Anticip Dist					

Crashos
Near Crashes
Moon and
Cont. TTP
Max Cone Spo
Dist At Max Brake
Max Steer Change Rate
Dist At Max Steer Change Rate
Steer Range
Closest Dist
Spd At Closest 1
Hazard Rating 1
Gas Rel TTP
Gas Rel Spd
Gas Rel Dist
Brake TTP
Brake Spd
Brake Dist
Anticip TTP
Speed at Anticip
Anticip Dist

r ≥0.5

r ≥0.4

r ≥0.3

r ≥0.2

lower

	3D-MOT	1 st Motion	2 nd Motion	1 st Orientation	2 nd Orientation	
	÷					
<u>)</u>						
	+					
						p <0.001
						p =0.001 or better
						p =0.01 or better
						p =0.05 or better
	+				0.0	

Can three-dimensional multiple object tracking training be used to improve simulated driving performance? A pilot study in young and older adults

Michaels J, Chaumillon R, Mejia-Romero S, Bernardin D, Faubert J (accepted for publication) Journal of Cognitive Enhancement

Fig. 1. Flow diagram outlining participant inclusion and randomization process. Sample size information about young adult (YA) and older adult (OA) and their distribution in experimental (EXP) and active control (CON) treatments is provided for each step.

	Measure	Unit	Description
1	Crash	n	Whether a collision occurred or not during the event.
2	Near Crash	n	 When within an event: Subject brakes harder than a given threshold while driving at a speed greater than 5 m/s (18km/h) The steering wheel is turned more than 60 degrees while driving faster than a speed threshold (5 m/s) The participant drives within 3m of an object while travelling at a speed greater than 10m/s (36km/h).
3	Mean Speed	km/h	Average speed of all driving. Data points where speed was inferior to 10km/h or recorded 300m before and 100m after an event were discarded from the averaging.
4	SDLP	m	Standard deviation of lateral position. Identical exclusion criteria as mean driving speed were applied. Additionally, for each data point, lateral positions recorded 10 seconds before and after a lane change were excluded from the averaging.
5	Max Brake	n	Hardest amount of braking applied during event of interest. Ranges between 0 (= no braking applied) and 1 (= brake pedal is fully depressed)
6	Distance at Max Brake	m	Distance from event of interest at which "Max brake" is recorded.
7	Max Steer Change Rate	º/s	Most extreme (in terms of range and speed) left or right steering wheel position change during event of interest.
8	Distance at Max Steer Change Rate	m	Distance at which "Max steer change rate" is recorded during event of interest.
9	Steer Range	ō	Difference in degrees between leftmost and rightmost steering wheel position for event of interest.

Table 1. Definition of the most pertinent measures identified by Michaels et al. 2017 and the units in which they were recorded. *n* corresponds to an undefined unity, *km* to kilometers, *h* to hours, *m* to meters, *e* to degrees, and *s* to seconds.

Can three-dimensional multiple object tracking training be used to improve simulated driving performance? A pilot study in young and older adults

Experimental training (5 weeks)

Α

OR

32

16

4

Active control training (5 weeks)

Can three-dimensional multiple object tracking training be used to improve simulated driving performance? A pilot study in young and older adults

Pre- and post-training mean values for Distance at Max Brake separated by training and age group. Error bars represent standard error of the mean (SEM).

Effect of 3D-MOT training on the execution of manual dexterity skills in a population of older adults with mild cognitive impairment and mild dementia

Laura P. Burgos-Morelos^a, José de Jesús Rivera-Sánchez^a, Ángel Daniel Santana-Vargas^a, Claudia Arreola-Mora^b, Adolfo Chávez-Negrete^b, J. Eduardo Lugo^{c,d}, Jocelyn Faubert^c, and Argelia Pérez-Pacheco^{a,e} (D)

Effect of 3D-MOT training on the execution of manual dexterity skills in a population of older adults with mild cognitive impairment and mild dementia

Laura P. Burgos-Morelos^a, José de Jesús Rivera-Sánchez^a, Ángel Daniel Santana-Vargas^a, Claudia Arreola-Mora^b, Adolfo Chávez-Negrete^b, J. Eduardo Lugo^{c,d}, Jocelyn Faubert^c, and Argelia Pérez-Pacheco^{a,e}

	MCI $n = 19, M \pm SD$	$MD = 19, M \pm SD$	df	t	<i>p</i> -Value
Age (vears)	74.11 ± 6.47	75.74 ± 6.15	36	796	.431
BMI	23.99 ± 3.46	23.52 ± 2.21	36	.499	.621
Education	8.95 ± 5.9	4.26 ± 1.45	36	3.360	.0019*
Lawton Brody	7.26 ± 0.93	6.05 ± 1.39	36	3.146	.0033*
Barthel	87.11 ± 6.08	82.11 ± 7.13	36	2.325	.0258*
GDS	1.79 ± 1.75	2.79 ± 1.44	36	1.925	062
MoCA	20.79 ± 2.02	14.32 ± 3.54		6.921	<.001*
Gender (% female)	73 7%	84.2%	1	χ ⁻ 633	426 [†]
CCI	73.770	04.270	2	1.556	.420 .459 [†]
0 (<i>n</i> , %)	9 (47.4)	11 (57.9)			
1 (<i>n</i> , %)	8 (42.1)	6 (31.6)			
2 (n, %)	2 (10.5)	2 (10.5)			

Table 1. Demographic, functional, and cognitive characteristics of MCI and MD groups.

M: mean; SD: standard deviation; df; degrees of freedom; MCI: mild cognitive impairment; MD: mild dementia; BMI: body mass index; GDS: Geriatric Depression Scale; CCI: Charlson Comorbidity Index; MoCA: Montreal Cognitive Assessment.

*Significant *t*-test for independent groups, p < 0.05. [†]Chi-square test.

Effect of 3D-MOT training on the execution of manual dexterity skills in a population of older adults with mild cognitive impairment and mild dementia

Laura P. Burgos-Morelos^a, José de Jesús Rivera-Sánchez^a, Ángel Daniel Santana-Vargas^a, Claudia Arreola-Mora^b, Adolfo Chávez-Negrete^b, J. Eduardo Lugo^{c,d}, Jocelyn Faubert^c, and Argelia Pérez-Pacheco^{a,e}

Figure 2. Average speed threshold scores as a function of 3D-MOT training sessions for MCI and MD group. Error bars represent SEM.

Effect of 3D-MOT training on the execution of manual dexterity skills in a population of older adults with mild cognitive impairment and mild dementia

Laura P. Burgos-Morelos^a, José de Jesús Rivera-Sánchez^a, Ángel Daniel Santana-Vargas^a, Claudia Arreola-Mora^b, Adolfo Chávez-Negrete^b, J. Eduardo Lugo^{c,d}, Jocelyn Faubert^c, and Argelia Pérez-Pacheco^{a,e} (

Group	Test	Pre-training (s) Me (IQR)	Post-training (s) Me (IQR)	Ζ	<i>p-</i> Value
MCI	GPT	138 (65)	93 (49)	-3.824	<.0001*
n = 19	MMDT-P	250 (68)	230 (50)	-3.622	<.0001*
	MMDT-T	282 (140)	240 (75)	-3.823	<.0001*
MD	GPT	158 (187)	124 (166)	-3.140	<.002*
n = 19	MMDT-P	277 (89)	241 (80)	-3.162	<.002*
	MMDT-T	294 (178)	239 (121)	-3.703	<.0001*

Table 2. Manual dexterity scores of tests: GPT and MMDT, pre and post the 3D-MOT training from MCI and MD groups.

Me: median; IQR: interquartile range; MCI: mild cognitive impairment; MD: mild dementia; GPT: Pegboard Grooved Test; MMDT-P: Minnesota Manual Dexterity Test-Placing Test; MMDT-T: Minnesota Manual Dexterity Test-Turning Test.

*Significant Wilcoxon signed rank test, p < 0.05.

NeuroTracker/EEG return Closing the loop

Parsons & Faubert, (2021) Enhancing learning in a perceptual-cognitive training paradigm using EEG-neurofeedback. https://www.nature.com/articles/s41598-021-83456-x.pdf

- Used « peak alpha » frequency (PAF) at Pz (Threshold = 95% baseline)
- Feedback while spheres in motion (red indexing)

Potential: Big data (NeuroTracker global use) June 2016

Merci!

Performance Validations

Medical Validations

Type in your questions using the chat box at the bottom of the control panel on the right side of your screen

Jocelyn Faubert, PhD Professor Université de Montreal

Use this contact information if you have additional questions from today's webinar

Jocelyn Faubert, PhD Professor Université de Montreal Email: jocelyn.faubert@umontreal.ca

Merci!

Performance Validations

Medical Validations

