Alzheimer's Disease Drug Development Pipeline: Innovations and New Directions
Disclosures

• JC has provided consultation to Acadia, Alkahest, AlphaCognition, AriBio, Avanir, Axsome, Behren Therapeutics, Biogen, Biohaven, Cassava, Cerecin, Cortexyme, Diadem, EIP Pharma, Eisai, GemVax, Genentech, Green Valley, Grifols, Janssen, LSP, Merck, NervGen, Novo Nordisk, Oligomerix, Ono, Otsuka, PRODEO, Prothena, ReMYND, Renew, Resverlogix, Roche, Signant Health, Suven, United Neuroscience, and Unlearn AI pharmaceutical, assessment, and investment companies.

• JC is supported by NIGMS grant P20GM109025; NINDS grant U01NS093334; NIA grant R01AG053798; NIA grant P20AG068053; NIA grant R35AG71476; Alzheimer’s Disease Drug Discovery Foundation (ADDF); and the Joy Chambers-Grundy Endowment.
Alzheimer’s Disease Drug Development Pipeline: Innovations and New Directions

- Drug development
- Pipeline overview
- Target categories
- Monoclonal antibodies
- Aducanumab Appropriate Use Recommendations
Drug Development Overview (with Biomarkers)

Nonclinical Discovery and Animal Testing

- Candidate Treatments; Efficacy (Biological, Behavioral) and Safety/Toxicity
- Measurable Biological Changes in Assays and Animals

Phase 1

- Single Ascending Dose (SAD) and Multiple Ascending Dose (MAD) Studies in Healthy Volunteers
- Safety Biomarkers; ECG, Liver Functions, Etc

Phase 2

- Proof-of-Concept and Dose-Finding Studies in AD Patients (400-800)
- Diagnosis; Target Engagement; Dose Response; Safety

Phase 3

- Confirmatory Trials with Clinical Benefit Shown (Accelerated Approval Require Biomarker Effect); 600-1200 Patients
- Diagnosis; Support for Disease Modification; Safety

FDA Review

- Comprehensive Review of Efficacy and Safety
- Clinical Pharmacology Section of Label (not the Indication); Accelerated Approval
Rights of Drug Development

- Precision neurology/medicine requires precision drug development
- Each “right” improves the probability of success of advancing the agents to the next level of development
- Phase 3 is the most expensive phase of drug development
- Stopping development of flawed agents early saves resources that can be redirected to other agents

Alzheimer’s Disease Drug Development Pipeline:

Methods

- Annual review beginning in 2016
- Based on clinicaltrials.gov
- Index date 1/25/2022
- Artificial intelligence and machine learning strategies
- Publicly accessible portal anticipated Q2/3 2022
- NIA-funded Alzheimer Clinical Trial Innovation (ACTION) Initiative

Audience Question: About how many drugs do you think are currently in Alzheimer trials?

<table>
<thead>
<tr>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000</td>
</tr>
</tbody>
</table>
Universe of Alzheimer’s Drug in Current Clinical Trials

- 143 agents in 172 trials
 - Phase 3 – 31 agents
 - DMTs – 21 (5 biologics)
 - Phase 2 – 82 agents
 - DMTs – 71 (26 biologics)
 - Phase 1 – 30 agents
 - DMTs – 83.2% of the agents
 - Cog Enhancers – 9.8%
 - NPS tx – 6.9%
 - Repurposed – 37%

Alzheimer’s Disease Drug Development Pipeline

- **Phase 1**: some trials done ex-US and not registered in the US
- Repurposed agents enter pipeline at Phase 2 or Phase 3 without Phase 1
- **Phase 2**:
 - Proof of concept; many drugs stopped for lack of efficacy
 - Some trials terminated for lack of recruitment other administrative reasons
- **Phase 3**: fewer, larger trials to meet regulatory requirements

<table>
<thead>
<tr>
<th>Phase</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>30</td>
</tr>
<tr>
<td>Phase 2</td>
<td>82</td>
</tr>
<tr>
<td>Phase 3</td>
<td>31</td>
</tr>
</tbody>
</table>
Audience Question: Which of the following is the target most represented in the Alzheimer drug development pipeline?

1) Amyloid
2) Inflammation
3) Tau
4) Gene therapy
Common AD Research Ontology (CADRO)

- Amyloid
- Tau
- Inflammation/Immunity
- Synaptic plasticity/Neuroprotection
- Metabolism and Bioenergetics
- Proteostasis/Proteinopathies
- Epigenetics
- Oxidative Stress
- Vasculature
- Neurogenesis
- Neurotransmitter Receptors
- Other

<table>
<thead>
<tr>
<th>Category</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amyloid</td>
<td>3</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Tau</td>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Inflammation/Immunity</td>
<td>5</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Synaptic plasticity/Neuroprotection</td>
<td>3</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Metabolism and Bioenergetics</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Proteostasis/Proteinopathies</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Epigenetics</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Oxidative Stress</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Vasculature</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Neurogenesis</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurotransmitter Receptors</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Much of the AD Drug Development Pipeline is Devoted to the Non-Canonical Targets (Amyloid, Tau)

- Amyloid: 14% of the pipeline (20 agents)
- Tau: 9% of the pipeline (13 agents)
- Non-canonical targets: 72% of pipeline (110 agents)
 - Inflammation: 16% (23 agents)
 - Synaptic plasticity: 13% (19 agents)
 - Metabolism/bioenergetics: 6% (8 agents)

Marci H, et al. FCDR Alzheimer’s Disorder 2016; 5: 3-33
Inflammation is a Primary or Secondary Target of Many Agents in the AD Drug Development Pipeline

- Allopregnenolone
- Baricitinib (Janus kinase inhibitor)
- BCG vaccine (immunomodulator)
- Blarcamesine (Sigma-1 agonist; M2 antagonist)
- Canakinumab (IL-1 mAb)
- Curcumin (NSAID)
- Daratumumab (CD38 mAb)
- Edicotinib (CSF-1R antagonist)
- Emtricitabine (NRTI)
- GB301 (regulatory T cells)
- GV-971 (dysbiosis reduction)
- L-serine (decreased inflammation)
- Lenalidomide (cytokine antagonist)
- Montelukast (leukotriene antagonist)
- NE3107 (MAPK inhibitor)
- Pepinemab (semaphoring 4D mAb)
- Salsalate (NSAID)
- Sargramostim (granulocyte stimulator)
- Semaglutide (GLP-1 agonist)
- TB006 (galatin 3 mAb)
- Tdap vaccine (immunomodulator)
- TREM2 antibody
- XPro1595 (TNF inhibitor)

(© J Cummings; M de la Flor, PhD, Illustrator)
Synaptic Integrity/Plasticity is a Primary or Secondary Target of Many Agents in the AD Drug Development Pipeline

- Allopregnanolone (GABA-B modulator)
- ATH-017 (HGF activator)
- Blarcamesine (Sigma-1 agonist; M2 antagonist)
- BMS-984923 (mGluR5 modulator)
- BPN14770 (PDE4 inhibitor)
- Bryostatin 1 (PKC inhibitor)
- COR388 (gingipain inhibitor)
- COR588 (gingipain inhibitor)
- CY6463 (Guanylate cyclase modulator)
- Endoerpic (neurotrophic)
- Elayta (sigma-2 antagonist)
- ExPlas (plasma transfusion)
- Levetirectam (SV2A modulator)
- MW150 (p38 MAPK inhibitor)
- Neflamapimod (p38 MAPK inhibitor; RAB-5 modulator)
- REM0046127 (calcium channel regulator)
- Simuflam (filamen A inhibitor)
- Troriluzole (glutamate modulator)
Anti-Diabetic Agents are Being Assessed in the AD Clinical Trials

- **Phase 3**
 - Metformin (insulin sensitizer)
 - Semaglutide (GLP-1 agonist)
- **Phase 2**
 - Dapagliflozin (SGLT2 inhibitor)
 - T3D-959 (PPAR agonist)
 - Insulin

AGES – advanced glycation end products; IRS-1; insulin receptor substrate 1; MG – microglia; ROS – reactive oxygen species

(© J Cummings; M de la Flor, PhD, Illustrator)
Tau-Directed Therapeutics are Advancing

Tau-Related Target	**Agents**
Aggregation inhibition | TRx0237; PU-AD
Vaccine | ACI-35
Monoclonal antibody | Bepranemab; E2814; JNJ-63733657; semorinemab
Antisense oligonucleotide | MAPTRx
O-GlycNAcase inhibitor | LY3373689
Microtubule depolymerization | Nicotinamide

Amyloid Processing Provides Targets for Small Molecules

<table>
<thead>
<tr>
<th>Amyloid (Aβ) Target</th>
<th>Small Molecule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance non-Aβ alpha-secretase pathway</td>
<td>APH-1105</td>
</tr>
<tr>
<td></td>
<td>MIB-626</td>
</tr>
<tr>
<td>Reduce APP by decreasing RNA transcription</td>
<td>Posiphen</td>
</tr>
<tr>
<td>Decrease pyroglutamate Aβ production</td>
<td>PQ912</td>
</tr>
<tr>
<td>Activates ABCC1 Aβ transporter</td>
<td>Thiethylperazine</td>
</tr>
<tr>
<td>Inhibits Aβ aggregation</td>
<td>Valitramiprosate (ALZ-801)</td>
</tr>
</tbody>
</table>

© J Cummings; M de la Flor, PhD, Illustrator
Amyloid Species are Important Targets for Anti-Amyloid Monoclonal Antibodies

<table>
<thead>
<tr>
<th>Amyloid (Aβ) Species</th>
<th>Monoclonal Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aβ plaques</td>
<td>Aducanumab</td>
</tr>
<tr>
<td></td>
<td>Lecanemab</td>
</tr>
<tr>
<td></td>
<td>Donanemab</td>
</tr>
<tr>
<td></td>
<td>Gantenerumab</td>
</tr>
<tr>
<td>Pyroglutamate Aβ</td>
<td>Donanemab</td>
</tr>
<tr>
<td>Protofibrillar Aβ</td>
<td>Lecanemab</td>
</tr>
<tr>
<td>Oligomeric Aβ</td>
<td>Aducanumab</td>
</tr>
<tr>
<td></td>
<td>Gantenerumab</td>
</tr>
<tr>
<td></td>
<td>Crenezumab</td>
</tr>
<tr>
<td>Monomeric Aβ</td>
<td>Solanezumab</td>
</tr>
<tr>
<td></td>
<td>Crenezumab</td>
</tr>
<tr>
<td>Peripheral Aβ monomer</td>
<td>Solanezumab</td>
</tr>
</tbody>
</table>
Novel Directions in the AD Drug Development Pipeline

- **Phase 3**
 - Gut-brain axis (GV-971)

- **Phase 2**
 - Amyloid vaccine (ADvx40)
 - Tau vaccine (ACI-35)
 - Antisense oligonucleotide targeting tau expression (BIIB080)
 - Epigenetic intervention (nicotinamide; lamivudine)
 - Stem cells (allogenic human MSCs; autologous natural killer cells)

- **Phase 1**
 - Epigenetic interventions (AAV-hTERT; vorinostat)
 - Stem cells (allogenic adipose MSC-exosomes; placental-derived MSCs; human umbilical cord-blood-derived MSCs; allogenic human MSCs)

Epigenetic modifications (© J Cummings; M de la Flor, PhD, Illustrator)

MSC– mesenchymal stem cells
Question: Which of the following biomarkers is the basis for accelerated approval of monoclonal antibodies?

1) CSF p-tau
2) Plasma p-tau
3) Amyloid PET
4) CSF amyloid
Aducanumab (Aduhelm)

- First approved disease-modifying therapy
- Anti-amyloid monoclonal antibody
- 30% slowing of decline in those on 10 mg/kg x 14 months
- Dramatic reduction of plaque burden\(^1\)
- Accelerated approval based on amyloid plaque reduction
- Amyloid-related imaging abnormalities (ARIA) as main side effect
- ARIA is associate with APOE4 genotype
- Appropriate Use Recommendations (AURs)\(^2\) bridge Prescribing Instructions and clinical practice

ADUHELM: Appropriate Use Recommendations

Emerging/Engage
- Protocol
- Inclusion/exclusion
- Amyloid confirmed
- Standardized treatment approach
- Monitored

Accelerated Approval
- Amyloid plaque reduction
- Supportive clinical benefit
- Confirmatory trial required

Prescribing Instructions
- Indication (MCI/mild AD dementia)
- Administration and titration
- ARIA monitoring
- Pharmacology (from clinical trials)

Appropriate Use Recommendations
- Expert Panel*
- Best practices
- Safety emphasis
- Patient-centered care

Aducanumab Appropriate Use Recommendations\(^1\) and AUR Update: Appropriate Patient

AUR

- MCI or mild AD dementia due to AD
- MRI with specific cerebrovascular factors exclude the patient from treatment
- Amyloid positive (amyloid PET or abnormal CSF amyloid or amyloid/p-tau)
- Anticoagulants (except aspirin) excluded the patient from treatment

AUR Update

- Exclude history of immune disorders or seizures
- Exclude patients with extensive white matter changes
- APOE genotyping recommended\(^2\)
 - Noncarriers – 20.3% had ARIA
 - Heterozygotes – 43% had ARIA
 - Homozygotes – 66% had ARIA

Aducanumab Appropriate Use Recommendations and AUR Update: Appropriate Patient

- Patient and care partner/family education is very important
- Understand
 - Anticipated benefits – slowing of loss of cognition and function, not improvement
 - Possible harms – ARIA-related
 - Adherence expectations – monthly infusion, MRI at baseline, amyloid PET or lumbar puncture, MRI monitoring, communication with clinicians (ARIA-related symptoms)
 - Duration of therapy – at least until beyond mild AD dementia
- Inclusivity, equity of treatment opportunity, and culturally-appropriate communication important
ADUHELM: Identifying Appropriate Patients

- MCI/ Mild AD Dementia
- Med/ Neuro Hx & Exam
- MRI
- Amyloid Confirmation
- ADUHELM

Cognitive, functional assessment (MMSE, MoCA); Patient-centered discussion
Autoimmune disorders, seizures, stroke, clotting disorders, medications
Macro-hemorrhage, infarcts, lacunes, microhemorrhages, siderosis
Amyloid PET or CSF amyloid measures
Titration and monitoring
Aducanumab Appropriate Use Recommendations and AUR Update: Appropriate ARIA Monitoring

- AUR update: add MRI prior to the 5th, 7th, 9th, 12th dose
- Most ARIA occurs within the titration period
Aducanumab Appropriate Use Recommendations and AUR Update:
Appropriate ARIA Management

- Most ARIA has no symptoms (74%)
- Treatment is suspended if any symptoms are present
- Treatment is suspended for moderate or severe ARIA-E or ARIA-H
- Treatment can be reinitiated if ARIA-E resolves or ARIA-H stabilizes
- ARIA update specifies ARIA-related stopping rules
- Severe ARIA is rare (0.3%); preparedness for these rare cases is important
AD Drug Development Pipeline: Summary

<table>
<thead>
<tr>
<th>Mechanism overlap; artificially separated (e.g., inflammation, oxidation, reactive oxygen species)</th>
<th>Combination approaches are uncommon (limited to vascular targets)</th>
<th>Amyloid and tau are common targets but these they comprise a minority of the pipeline agent mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomarkers are enormously helpful; more are needed</td>
<td>Most drugs in the pipeline are DMTs; few cognitive enhancers or treatments for neuropsychiatric symptoms</td>
<td>Aducanumab is the first approved DMT for AD; other anti-amyloid monoclonal antibodies are promising</td>
</tr>
</tbody>
</table>
Chambers-Grundy Center for Transformative Neuroscience

• Department of Brain Health
 • Jefferson Kinney
 • Samantha John
 • Kate Zhong

• Clinical Trial Observatory
 • Garam Lee
 • Jorge Fonseca
 • Sidkazem Taghva
 • Mina Kambar
 • Pouyan Nahed
 • Sam Black

• ACTION Initiative
 • Elissa Coambs
 • Susan Nelson

• NIGMS grant P20GM109025
• NINDS grant U01NS093334
• NIA grant R01AG053798
• NIA grant P20AG068053
• NIA grant R35AG71476
• Alzheimer’s Disease Drug Discovery Foundation (ADDF)
• Joy Chambers-Grundy Endowment
Thank you